dc.contributor.author |
Farakos, K |
en |
dc.contributor.author |
Mavromatos, NE |
en |
dc.contributor.author |
McNeill, D |
en |
dc.date.accessioned |
2014-03-01T01:48:59Z |
|
dc.date.available |
2014-03-01T01:48:59Z |
|
dc.date.issued |
1999 |
en |
dc.identifier.issn |
0556-2821 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/25643 |
|
dc.subject.classification |
Astronomy & Astrophysics |
en |
dc.subject.classification |
Physics, Particles & Fields |
en |
dc.subject.other |
CHIRAL-SYMMETRY-BREAKING |
en |
dc.subject.other |
T-J MODEL |
en |
dc.subject.other |
(2+1)-DIMENSIONAL QUANTUM ELECTRODYNAMICS |
en |
dc.subject.other |
2+1 DIMENSIONS |
en |
dc.subject.other |
2-DIMENSIONAL SUPERCONDUCTIVITY |
en |
dc.subject.other |
C SUPERCONDUCTORS |
en |
dc.subject.other |
HUBBARD-MODEL |
en |
dc.subject.other |
NORMAL-STATE |
en |
dc.subject.other |
FERMIONS |
en |
dc.subject.other |
YBA2CU3O7-DELTA |
en |
dc.title |
Phase structure of lattice SU(2)circle times U-S(1) three-dimensional gauge theory |
en |
heal.type |
journalArticle |
en |
heal.identifier.secondary |
034502 |
en |
heal.language |
English |
en |
heal.publicationDate |
1999 |
en |
heal.abstract |
We discuss a phase diagram for a relativistic SU(2) X U-S(1) lattice gauge theory, with emphasis on the formation of a parity-invariant chiral condensate, in the case when the U-S(1) field is infinitely coupled, and the SU(2) held is moved away from infinite coupling by means of a strong-coupling expansion. We provide analytical arguments on the existence of (and partially derive) a critical line in coupling space, separating the phase of broken SU(2) symmetry from that where the symmetry is unbroken. We review unconventional (Kosterlitz-Thouless type) superconducting properties of the model, upon coupling it to external electromagnetic potentials. We discuss the role of instantons of the unbroken subgroup U(1) is an element of SU(2), in eventually destroying superconductivity under certain circumstances. The model may have applications to the theory of high-temperature superconductivity. In particular, we argue that in the regime of the couplings lending to the broken SU(2) phase, the model may provide an explanation on the appearance of a pseudogap phase, lying between the antiferromagnetic and the superconducting phases. In such a phase, a fermion mass gap appears in the theory, but there is no phase coherence, due to the Kosterlitz-Thouless mode of symmetry breaking. The absence of superconductivity in this phase is attributed to nonperturbative effects (instantons) of the gauge field U(1) is an element of SU(2). [S0556-2821(99)04701-3]. |
en |
heal.publisher |
AMERICAN PHYSICAL SOC |
en |
heal.journalName |
PHYSICAL REVIEW D |
en |
dc.identifier.isi |
ISI:000078586800037 |
en |
dc.identifier.volume |
5903 |
en |
dc.identifier.issue |
3 |
en |