HEAL DSpace

Phase structure of lattice SU(2)circle times U-S(1) three-dimensional gauge theory

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Farakos, K en
dc.contributor.author Mavromatos, NE en
dc.contributor.author McNeill, D en
dc.date.accessioned 2014-03-01T01:48:59Z
dc.date.available 2014-03-01T01:48:59Z
dc.date.issued 1999 en
dc.identifier.issn 0556-2821 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/25643
dc.subject.classification Astronomy & Astrophysics en
dc.subject.classification Physics, Particles & Fields en
dc.subject.other CHIRAL-SYMMETRY-BREAKING en
dc.subject.other T-J MODEL en
dc.subject.other (2+1)-DIMENSIONAL QUANTUM ELECTRODYNAMICS en
dc.subject.other 2+1 DIMENSIONS en
dc.subject.other 2-DIMENSIONAL SUPERCONDUCTIVITY en
dc.subject.other C SUPERCONDUCTORS en
dc.subject.other HUBBARD-MODEL en
dc.subject.other NORMAL-STATE en
dc.subject.other FERMIONS en
dc.subject.other YBA2CU3O7-DELTA en
dc.title Phase structure of lattice SU(2)circle times U-S(1) three-dimensional gauge theory en
heal.type journalArticle en
heal.identifier.secondary 034502 en
heal.language English en
heal.publicationDate 1999 en
heal.abstract We discuss a phase diagram for a relativistic SU(2) X U-S(1) lattice gauge theory, with emphasis on the formation of a parity-invariant chiral condensate, in the case when the U-S(1) field is infinitely coupled, and the SU(2) held is moved away from infinite coupling by means of a strong-coupling expansion. We provide analytical arguments on the existence of (and partially derive) a critical line in coupling space, separating the phase of broken SU(2) symmetry from that where the symmetry is unbroken. We review unconventional (Kosterlitz-Thouless type) superconducting properties of the model, upon coupling it to external electromagnetic potentials. We discuss the role of instantons of the unbroken subgroup U(1) is an element of SU(2), in eventually destroying superconductivity under certain circumstances. The model may have applications to the theory of high-temperature superconductivity. In particular, we argue that in the regime of the couplings lending to the broken SU(2) phase, the model may provide an explanation on the appearance of a pseudogap phase, lying between the antiferromagnetic and the superconducting phases. In such a phase, a fermion mass gap appears in the theory, but there is no phase coherence, due to the Kosterlitz-Thouless mode of symmetry breaking. The absence of superconductivity in this phase is attributed to nonperturbative effects (instantons) of the gauge field U(1) is an element of SU(2). [S0556-2821(99)04701-3]. en
heal.publisher AMERICAN PHYSICAL SOC en
heal.journalName PHYSICAL REVIEW D en
dc.identifier.isi ISI:000078586800037 en
dc.identifier.volume 5903 en
dc.identifier.issue 3 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής