dc.contributor.author |
Draper, D |
en |
dc.contributor.author |
Fouskakis, D |
en |
dc.date.accessioned |
2014-03-01T01:49:06Z |
|
dc.date.available |
2014-03-01T01:49:06Z |
|
dc.date.issued |
2000 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/25674 |
|
dc.subject |
bayesian decision theory |
en |
dc.subject |
Case Study |
en |
dc.subject |
Cross Validation |
en |
dc.subject |
Data Collection |
en |
dc.subject |
Expected Utility |
en |
dc.subject |
Expected Value |
en |
dc.subject |
Genetic Algorithm |
en |
dc.subject |
Health Policy |
en |
dc.subject |
Hospital Admission |
en |
dc.subject |
Hospital Care |
en |
dc.subject |
Input Output Analysis |
en |
dc.subject |
Logistic Regression |
en |
dc.subject |
Monte Carlo Method |
en |
dc.subject |
Mortality Rate |
en |
dc.subject |
Prediction Accuracy |
en |
dc.subject |
Quality of Health Care |
en |
dc.subject |
Sensitivity Analysis |
en |
dc.subject |
Simulated Annealing |
en |
dc.subject |
Stochastic Optimization |
en |
dc.subject |
Threshold Accepting |
en |
dc.subject |
Variable Selection |
en |
dc.subject |
tabu search |
en |
dc.title |
A Case Study of Stochastic Optimization in Health Policy: Problem Formulation and Preliminary Results |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1023/A:1026504402220 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1023/A:1026504402220 |
en |
heal.publicationDate |
2000 |
en |
heal.abstract |
We use Bayesian decision theory to address a variable selection problem arising in attempts to indirectly measure the quality of hospital care, by comparing observed mortality rates to expected values based on patient sickness at admission. Our method weighs data collection costs against predictive accuracy to find an optimal subset of the available admission sickness variables. The approach involves maximizing |
en |
heal.journalName |
Journal of Global Optimization |
en |
dc.identifier.doi |
10.1023/A:1026504402220 |
en |