dc.contributor.author |
Ambjørn, J |
en |
dc.contributor.author |
Anagnostopoulos, K |
en |
dc.contributor.author |
Loll, R |
en |
dc.date.accessioned |
2014-03-01T01:49:19Z |
|
dc.date.available |
2014-03-01T01:49:19Z |
|
dc.date.issued |
2000 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/25721 |
|
dc.subject |
Conformal Field Theory |
en |
dc.subject |
Critical Exponent |
en |
dc.subject |
hausdorff dimension |
en |
dc.subject |
ising model |
en |
dc.subject |
Lessons Learned |
en |
dc.subject |
Quantum Gravity |
en |
dc.subject |
Phase Transition |
en |
dc.title |
Crossing the c=1 barrier in 2D Lorentzian quantum gravity |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1103/PhysRevD.61.044010 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1103/PhysRevD.61.044010 |
en |
heal.publicationDate |
2000 |
en |
heal.abstract |
In an extension of earlier work we investigate the behaviour oftwo-dimensional Lorentzian quantum gravity under coupling to a conformal fieldtheory with c>1. This is done by analyzing numerically a system of eight Isingmodels (corresponding to c=4) coupled to dynamically triangulated Lorentziangeometries. It is known that a single Ising model couples weakly to Lorentzianquantum gravity, in |
en |
heal.journalName |
Physical Review D |
en |
dc.identifier.doi |
10.1103/PhysRevD.61.044010 |
en |