dc.contributor.author |
Roumeliotis, J |
en |
dc.contributor.author |
Fulford, G |
en |
dc.date.accessioned |
2014-03-01T01:49:21Z |
|
dc.date.available |
2014-03-01T01:49:21Z |
|
dc.date.issued |
2000 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/25735 |
|
dc.subject |
Boundary Integral Equation |
en |
dc.subject |
Boundary Integral Method |
en |
dc.subject |
Chemical Engineering |
en |
dc.subject |
Coupled System |
en |
dc.subject |
Cubic Spline |
en |
dc.subject |
Flow Field |
en |
dc.subject |
Free Surface |
en |
dc.subject |
Free Surface Flow |
en |
dc.subject |
Integral Equation |
en |
dc.subject |
Numerical Technique |
en |
dc.subject |
Reproductive Biology |
en |
dc.subject |
Stokes Flow |
en |
dc.subject |
Surface Deformation |
en |
dc.subject |
Velocity Profile |
en |
dc.title |
Droplet interactions in creeping flow |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0045-7930(99)00032-8 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0045-7930(99)00032-8 |
en |
heal.publicationDate |
2000 |
en |
heal.abstract |
A highly accurate Boundary Integral Method is developed for modeling the interaction of axi-symmetric drops in Stokes flow. Both two-droplet and three-droplet interactions are considered. The flow field is expressed as a system of integral equations that represents a distribution of source and sink points along the surface of each body. On rigid particles, this results in a coupled system |
en |
heal.journalName |
Computers & Fluids |
en |
dc.identifier.doi |
10.1016/S0045-7930(99)00032-8 |
en |