dc.contributor.author |
Karpouzis, K |
en |
dc.contributor.author |
Tsapatsoulis, N |
en |
dc.contributor.author |
Raouzaiou, A |
en |
dc.contributor.author |
Moshovitis, G |
en |
dc.contributor.author |
Kollias, S |
en |
dc.date.accessioned |
2014-03-01T01:49:23Z |
|
dc.date.available |
2014-03-01T01:49:23Z |
|
dc.date.issued |
2000 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/25748 |
|
dc.subject |
Emotion Recognition |
en |
dc.subject |
Human Computer Interaction |
en |
dc.subject |
Image Sequence |
en |
dc.subject |
Integrable System |
en |
dc.subject |
Machine Vision |
en |
dc.subject |
Muscle Activity |
en |
dc.subject |
Area of Interest |
en |
dc.subject |
Motion Vector Field |
en |
dc.title |
Enhancing nonverbal human computer interaction with expression recognition |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1145/569244.569245 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1145/569244.569245 |
en |
heal.publicationDate |
2000 |
en |
heal.abstract |
This paper describes an integrated system for human emotion recognition, which is used to provide feedback about the relevance or impact of the information that is presented to the user. Other techniques in this field extract explicit motion fields from the areas of interest and classify them with the help of templates or training sets; the proposed system, however, compares |
en |
heal.journalName |
ACM Sigcaph Computers and The Physically Handicapped |
en |
dc.identifier.doi |
10.1145/569244.569245 |
en |