dc.contributor.author |
Pavlopoulos, S |
en |
dc.contributor.author |
Kyriacou, E |
en |
dc.contributor.author |
Koutsouris, D |
en |
dc.contributor.author |
Blekas, K |
en |
dc.contributor.author |
Stafylopatis, A |
en |
dc.contributor.author |
Zoumpoulis, P |
en |
dc.date.accessioned |
2014-03-01T01:49:24Z |
|
dc.date.available |
2014-03-01T01:49:24Z |
|
dc.date.issued |
2000 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/25765 |
|
dc.subject |
Fractal Dimension |
en |
dc.subject |
Fuzzy Clustering |
en |
dc.subject |
Fuzzy Neural Network |
en |
dc.subject |
Fuzzy Set |
en |
dc.subject |
Image Texture Analysis |
en |
dc.subject |
Neural Network Classifier |
en |
dc.subject |
Texture Analysis |
en |
dc.subject |
First Order |
en |
dc.subject |
Grade of Membership |
en |
dc.subject |
voronoi diagram |
en |
dc.title |
Fuzzy neural network-based texture analysis of ultrasonic images |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/51.816243 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/51.816243 |
en |
heal.publicationDate |
2000 |
en |
heal.abstract |
The efficacy of a novel fuzzy neural network classifier for the characterization of ultrasonic liver images based on texture analysis techniques is investigated. Classification features are extracted with the use of image texture analysis techniques such as fractal dimension texture analysis, spatial gray-level dependence matrices, gray-level difference statistics, gray-level run-length statistics, and first-order gray-level parameters. These features are fed to |
en |
heal.journalName |
IEEE Pulse |
en |
dc.identifier.doi |
10.1109/51.816243 |
en |