dc.contributor.author |
Loll, R |
en |
dc.contributor.author |
Ambjørn, J |
en |
dc.contributor.author |
Anagnostopoulos, K |
en |
dc.date.accessioned |
2014-03-01T01:49:28Z |
|
dc.date.available |
2014-03-01T01:49:28Z |
|
dc.date.issued |
2000 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/25794 |
|
dc.subject |
Higher Dimensions |
en |
dc.subject |
Path Integral |
en |
dc.subject |
Quantum Gravity |
en |
dc.subject |
non perturbative |
en |
dc.subject |
Space Time |
en |
dc.title |
Making the gravitational path integral more Lorentzian or Life beyond Liouville gravity |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0920-5632(00)00776-3 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0920-5632(00)00776-3 |
en |
heal.publicationDate |
2000 |
en |
heal.abstract |
In two space-time dimensions, there is a theory of Lorentzian quantum gravity which can be defined by a rigorous, non-perturbative path integral and is inequivalent to the well-known theory of (Euclidean) quantum Liouville gravity. It has a number of appealing features: i) its quantum geometry is non-fractal, ii) it remains consistent when coupled to matter, even beyond the c=1 barrier, |
en |
heal.journalName |
Nuclear Physics B-proceedings Supplements |
en |
dc.identifier.doi |
10.1016/S0920-5632(00)00776-3 |
en |