dc.contributor.author |
Halidias, N |
en |
dc.contributor.author |
Papageorgiou, N |
en |
dc.date.accessioned |
2014-03-01T01:49:30Z |
|
dc.date.available |
2014-03-01T01:49:30Z |
|
dc.date.issued |
2000 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/25809 |
|
dc.subject |
Boundary Condition |
en |
dc.subject |
Compact Operator |
en |
dc.subject |
Existence of Solution |
en |
dc.subject |
Maximal Monotone Operator |
en |
dc.subject |
Nonlinear Boundary Value Problem |
en |
dc.subject |
Nonlinear Differential Equation |
en |
dc.subject |
Second Order |
en |
dc.title |
Nonlinear boundary value problems with maximal monotone terms |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/PL00000131 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/PL00000131 |
en |
heal.publicationDate |
2000 |
en |
heal.abstract |
Summary. In this paper we consider a second order nonlinear differential equation with maximal monotone terms and nonlinear, possibly multivalued boundary conditions. Using the theory of maximal monotone operators and the Leray--Schauder alternative theorem we establish the existence of solutions. Our formulation is very general and includes as special cases the Dirichlet, Neumann and periodic problems. |
en |
heal.journalName |
Aequationes Mathematicae |
en |
dc.identifier.doi |
10.1007/PL00000131 |
en |