dc.contributor.author |
Hu, S |
en |
dc.contributor.author |
Papageorgiou, N |
en |
dc.date.accessioned |
2014-03-01T01:49:30Z |
|
dc.date.available |
2014-03-01T01:49:30Z |
|
dc.date.issued |
2000 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/25810 |
|
dc.subject |
Boundary Condition |
en |
dc.subject |
Differential Equation |
en |
dc.subject |
Maximal Monotone Operator |
en |
dc.subject |
Monotone Operator |
en |
dc.subject |
Nonlinear Elliptic Problem |
en |
dc.subject |
Strong Solution |
en |
dc.title |
Nonlinear Elliptic Problems of Neumann-Type |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1023/A:1004883721069 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1023/A:1004883721069 |
en |
heal.publicationDate |
2000 |
en |
heal.abstract |
In this paper we study a nonlinear elliptic differential equation driven by the p-Laplacian with a multivalued boundary condition of the Neumann type. Using techniques from the theory of maximal monotone operators and a theorem on the range of the sum of monotone operators, we prove the existence of a (strong) solution. |
en |
dc.identifier.doi |
10.1023/A:1004883721069 |
en |