dc.contributor.author |
Psarrakos, P |
en |
dc.date.accessioned |
2014-03-01T01:49:30Z |
|
dc.date.available |
2014-03-01T01:49:30Z |
|
dc.date.issued |
2000 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/25814 |
|
dc.subject |
Eigenvalues |
en |
dc.subject |
Indefinite Inner Product |
en |
dc.subject |
Numerical Approximation |
en |
dc.subject |
Numerical Range |
en |
dc.title |
Numerical range of linear pencils |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0024-3795(00)00145-2 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0024-3795(00)00145-2 |
en |
heal.publicationDate |
2000 |
en |
heal.abstract |
Consider a linear pencil Aλ+B, where A and B are n×n complex matrices. The numerical range of Aλ+B is defined asW(Aλ+B)=λ∈C:x*(Aλ+B)x=0forsomenonzerox∈Cn.In this paper, we study the geometrical properties of W(Aλ+B), with emphasis to its boundary. An answer to the problem of the numerical approximation of W(Aλ+B), when one of the coefficients A and B is Hermitian, is presented. The numerical |
en |
heal.journalName |
Linear Algebra and Its Applications |
en |
dc.identifier.doi |
10.1016/S0024-3795(00)00145-2 |
en |