dc.contributor.author |
Kanellopoulos, V |
en |
dc.date.accessioned |
2014-03-01T01:49:31Z |
|
dc.date.available |
2014-03-01T01:49:31Z |
|
dc.date.issued |
2000 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/25820 |
|
dc.subject |
banach space |
en |
dc.subject |
Hilbert Space |
en |
dc.subject |
normed linear space |
en |
dc.title |
On the convexity of the weakly compact Chebyshev sets in Banach spaces |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/BF02773563 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/BF02773563 |
en |
heal.publicationDate |
2000 |
en |
heal.abstract |
A sufficient condition for a Banach spaceX is given so that every weakly compact Chebyshev subset ofX is convex. For this purpose a class broader than that of smooth Banach spaces is defined. In this way a former result of A. Brøndsted and A. L. Brown is partially extended in every finite dimensional normed linear space and a known result |
en |
heal.journalName |
Israel Journal of Mathematics |
en |
dc.identifier.doi |
10.1007/BF02773563 |
en |