dc.contributor.author |
Eades, P |
en |
dc.contributor.author |
Symvonis, A |
en |
dc.contributor.author |
Whitesides, S |
en |
dc.date.accessioned |
2014-03-01T01:49:38Z |
|
dc.date.available |
2014-03-01T01:49:38Z |
|
dc.date.issued |
2000 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/25874 |
|
dc.subject |
Graph Colouring |
en |
dc.subject |
Graph Drawing |
en |
dc.subject |
Graph Theory |
en |
dc.subject |
Maximum Degree |
en |
dc.subject |
Three Dimensional |
en |
dc.title |
Three-dimensional orthogonal graph drawing algorithms |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0166-218X(00)00172-4 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0166-218X(00)00172-4 |
en |
heal.publicationDate |
2000 |
en |
heal.abstract |
Abstract We use basic results from graph theory to design algorithms for constructing three-dimensional, intersection-free orthogonal grid drawings of n vertex graphs of maximum,degree 6. The best previous result generated a drawing bounded by an O( p n) ◊O( p n) ◊O( p n) box, with each edge route containing up to 16 bends. Our algorithms initiate the study of |
en |
heal.journalName |
Discrete Applied Mathematics |
en |
dc.identifier.doi |
10.1016/S0166-218X(00)00172-4 |
en |