dc.contributor.author |
Boutsis, S |
en |
dc.contributor.author |
Demiros, I |
en |
dc.contributor.author |
Giouli, V |
en |
dc.contributor.author |
Liakata, M |
en |
dc.contributor.author |
Papageorgiou, H |
en |
dc.contributor.author |
Piperidis, S |
en |
dc.date.accessioned |
2014-03-01T01:49:45Z |
|
dc.date.available |
2014-03-01T01:49:45Z |
|
dc.date.issued |
2000 |
en |
dc.identifier.issn |
0302-9743 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/25900 |
|
dc.subject.classification |
Computer Science, Artificial Intelligence |
en |
dc.title |
A system for recognition of named entities in Greek |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2000 |
en |
heal.abstract |
In this paper, we describe work in progress for the development of a Greek named entity recognizer. The system aims at information extraction applications where large scale text processing is needed. Speed of analysis, system robustness, and results accuracy have been the basic guidelines for the system's design. Pattern matching techniques have been implemented on top of an existing automated pipeline for Greek text processing and the resulting system depends on non-recursive regular expressions in order to capture different types of named entities. For development and testing purposes, we collected a corpus of financial texts from several web sources and manually annotated part of it. Overall precision and recall are 86% and 81 % respectively. |
en |
heal.publisher |
SPRINGER-VERLAG BERLIN |
en |
heal.journalName |
NATURAL LANGUAGE PROCESSING-NLP 2000, PROCEEDINGS |
en |
heal.bookName |
LECTURE NOTES IN ARTIFICIAL INTELLIGENCE |
en |
dc.identifier.isi |
ISI:000170202300039 |
en |
dc.identifier.volume |
1835 |
en |
dc.identifier.spage |
424 |
en |
dc.identifier.epage |
435 |
en |