dc.contributor.author |
Papageorgiou, NS |
en |
dc.contributor.author |
Papalini, F |
en |
dc.contributor.author |
Yannakakis, N |
en |
dc.date.accessioned |
2014-03-01T01:50:05Z |
|
dc.date.available |
2014-03-01T01:50:05Z |
|
dc.date.issued |
2000 |
en |
dc.identifier.issn |
0895-7177 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/25990 |
|
dc.subject |
pseudomonotone operator |
en |
dc.subject |
L-pseudomonotoncity |
en |
dc.subject |
L-generalized pseudomonotonicity |
en |
dc.subject |
operator of type (S)(+) |
en |
dc.subject |
surjective operator |
en |
dc.subject |
coercive operator |
en |
dc.subject |
compact embedding |
en |
dc.subject |
evolution triple |
en |
dc.subject |
extremal solution |
en |
dc.subject |
continuous selection |
en |
dc.subject |
parabolic problem |
en |
dc.subject.classification |
Computer Science, Interdisciplinary Applications |
en |
dc.subject.classification |
Computer Science, Software Engineering |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
PERTURBATIONS |
en |
dc.subject.other |
EXISTENCE |
en |
dc.subject.other |
EQUATIONS |
en |
dc.title |
Nonmonotone, nonlinear evolution inclusions |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2000 |
en |
heal.abstract |
In this paper, we consider nonlinear evolution problems, defined on an evolution triple of spaces, driven by a nonmonotone operator, and with a perturbation term which is multivalued. We prove existence theorems for the cases of a convex and of a nonconvex valued perturbation term which is defined on all of T x H or only on T x X with values in H or even in X* there X subset of or equal to H subset of or equal to X* is the evolution triple). Also, we prove the existence of extremal solutions, and for the "monotone" problem we have a strong relaxation theorem. Some examples of nonlinear parabolic problems are presented. (C) 2000 Elsevier Science Ltd. All rights reserved. |
en |
heal.publisher |
PERGAMON-ELSEVIER SCIENCE LTD |
en |
heal.journalName |
MATHEMATICAL AND COMPUTER MODELLING |
en |
dc.identifier.isi |
ISI:000165075000008 |
en |
dc.identifier.volume |
32 |
en |
dc.identifier.issue |
11-13 |
en |
dc.identifier.spage |
1345 |
en |
dc.identifier.epage |
1365 |
en |