dc.contributor.author |
Kourogenis, NC |
en |
dc.contributor.author |
Papageorgiou, NS |
en |
dc.date.accessioned |
2014-03-01T01:50:19Z |
|
dc.date.available |
2014-03-01T01:50:19Z |
|
dc.date.issued |
2000 |
en |
dc.identifier.issn |
0019-5588 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/26019 |
|
dc.subject |
directionally continuous selector |
en |
dc.subject |
filippov regularization |
en |
dc.subject |
unbounded nonconvex orientor field |
en |
dc.subject |
multivalued Leray-Schauder alternative theorem |
en |
dc.subject |
compact operator |
en |
dc.subject |
Green's identity |
en |
dc.subject |
density point |
en |
dc.subject |
Lusin's theorem |
en |
dc.subject |
Sobolev embedding theorem |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
BOUNDARY-VALUE-PROBLEMS |
en |
dc.subject.other |
EXISTENCE THEOREMS |
en |
dc.title |
Second order differential inclusions with a maximal monotone term and a nonconvex, unbounded multifunction |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2000 |
en |
heal.abstract |
In this paper we consider a second order multivalued periodic problem with a maximal monotone term and a nonconvex and unbounded orientor field. Using directionally continuous selectors we pass to a related convex problem which we solve via a fixed point argument. Then we show that the solutions of the convex problem also solve the original inclusion. |
en |
heal.publisher |
INDIAN NAT SCI ACAD |
en |
heal.journalName |
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS |
en |
dc.identifier.isi |
ISI:000166668800007 |
en |
dc.identifier.volume |
31 |
en |
dc.identifier.issue |
11 |
en |
dc.identifier.spage |
1463 |
en |
dc.identifier.epage |
1474 |
en |