HEAL DSpace

The Green's function of the mild-slope equation: The case of a monotonic bed profile

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Belibassakis, KA en
dc.date.accessioned 2014-03-01T01:50:31Z
dc.date.available 2014-03-01T01:50:31Z
dc.date.issued 2000 en
dc.identifier.issn 0165-2125 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/26039
dc.subject.classification Acoustics en
dc.subject.classification Mechanics en
dc.subject.classification Physics, Multidisciplinary en
dc.subject.other SOUND-PROPAGATION en
dc.subject.other WAVES en
dc.subject.other SCATTERING en
dc.title The Green's function of the mild-slope equation: The case of a monotonic bed profile en
heal.type journalArticle en
heal.language English en
heal.publicationDate 2000 en
heal.abstract In the present work the Green's function of the mild-slope and the modified mild-slope equations is studied. An effective numerical Fourier inversion scheme has been developed and applied to the construction and study of the source-generated water-wave potential over an uneven bottom profile with different depths at infinity. In this sense, the present work is a prerequisite to the study of the diffraction of water waves by localized bed irregularities superimposed over an uneven bottom. In the case of a monotonic bed profile, the main characteristics of the far-field are: (i) the formation of a shadow zone with an ever expanding width, which is located along the bottom irregularity, and (ii) in each of the two sectors not including the bottom irregularity the asymptotic behavior of the wave field approaches the form of an outgoing cylindrical wave, propagating with an amplitude of order O(R-1/2), where R is the distance from the source, and wavelength corresponding to the sector-depth at infinity. Moreover, the weak wave system propagating in the shadow zone is of order O(R-3/2), and along the bottom irregularity consists of the superposition of two outgoing waves with wavelengths corresponding to the two depths at infinity. (C) 2000 Elsevier Science B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName WAVE MOTION en
dc.identifier.isi ISI:000089184200004 en
dc.identifier.volume 32 en
dc.identifier.issue 4 en
dc.identifier.spage 339 en
dc.identifier.epage 361 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής