dc.contributor.author | Fouskakis, D | en |
dc.contributor.author | Draper, D | en |
dc.date.accessioned | 2014-03-01T01:50:58Z | |
dc.date.available | 2014-03-01T01:50:58Z | |
dc.date.issued | 2001 | en |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/26189 | |
dc.relation.uri | http://www.math.ntua.gr/~fouskakis/Publications/4.pdf | en |
dc.subject | bayesian decision theory | en |
dc.subject | Cost Effectiveness | en |
dc.subject | Exact Algorithm | en |
dc.subject | Expected Utility | en |
dc.subject | General Linear Model | en |
dc.subject | Genetic Algorithm | en |
dc.subject | Global Optimization | en |
dc.subject | Heuristic Method | en |
dc.subject | Hospital Care | en |
dc.subject | Hybrid Algorithm | en |
dc.subject | Simulated Annealing | en |
dc.subject | Stochastic Optimization | en |
dc.subject | Variable Selection | en |
dc.subject | Local Search | en |
dc.subject | tabu search | en |
dc.title | Stochastic Optimization: a Review | en |
heal.type | journalArticle | en |
heal.publicationDate | 2001 | en |
heal.abstract | Summary We review three leading stochastic optimization methods—simulated annealing, genetic algorithms, and tabu search. In each case we analyze the method, give the exact algorithm, detail advantages and disadvantages, and summarize the literature on optimal values of the inputs. As a motivating example we describe the solution—using Bayesian decision theory, via maximization of expected utility—of a variable selection problem in | en |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |