dc.contributor.author |
Bader, R |
en |
dc.date.accessioned |
2014-03-01T01:51:01Z |
|
dc.date.available |
2014-03-01T01:51:01Z |
|
dc.date.issued |
2001 |
en |
dc.identifier.issn |
0232-2064 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/26219 |
|
dc.subject |
fixed-point index |
en |
dc.subject |
(U, V)-approximation |
en |
dc.subject |
evolution inclusions |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
SET |
en |
dc.title |
A topological fixed-point index theory for evolution inclusions |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2001 |
en |
heal.abstract |
In the paper we construct a topological fixed-point theory for a class of set-valued maps which appears in natural way in boundary value problems for differential inclusions. Our construction is based upon the notion of (U, V)-approximation in the sense of Ben-El-Mechaiekh and Deguire. As applications we consider initial-value problems for nonlinear evolution inclusions of the type [GRAPHICS] where the operator Lambda satisfies various monotonicity assumptions and F is an upper semi-continuous set-valued perturbation. |
en |
heal.publisher |
HELDERMANN VERLAG |
en |
heal.journalName |
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN |
en |
dc.identifier.isi |
ISI:000168777800001 |
en |
dc.identifier.volume |
20 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
3 |
en |
dc.identifier.epage |
15 |
en |