HEAL DSpace

He in dichromatic weak or strong ac fields of lambda(1)=248 nm and lambda(2) = (1/m) 248 nm (m=2,3,4)

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Mercouris, T en
dc.contributor.author Nicolaides, CA en
dc.date.accessioned 2014-03-01T01:51:09Z
dc.date.available 2014-03-01T01:51:09Z
dc.date.issued 2001 en
dc.identifier.issn 1050-2947 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/26239
dc.subject.classification Optics en
dc.subject.classification Physics, Atomic, Molecular & Chemical en
dc.subject.other 2-COLOR MULTIPHOTON IONIZATION en
dc.subject.other ABOVE-THRESHOLD IONIZATION en
dc.subject.other INTENSE LASER FIELD en
dc.subject.other UNIMOLECULAR REACTIONS en
dc.subject.other ANGULAR-DISTRIBUTIONS en
dc.subject.other PHASE-CONTROL en
dc.subject.other PHOTOIONIZATION en
dc.subject.other FREQUENCIES en
dc.subject.other EXCITATION en
dc.subject.other HYDROGEN en
dc.title He in dichromatic weak or strong ac fields of lambda(1)=248 nm and lambda(2) = (1/m) 248 nm (m=2,3,4) en
heal.type journalArticle en
heal.identifier.secondary 013411 en
heal.language English en
heal.publicationDate 2001 en
heal.abstract We have computed multiphoton ionization rates for He irradiated by a dichromatic ac held consisting of the fundamental wavelength lambda = 248 nm and its second-, third-, and fourth-higher harmonics. The intensities are in the range 1.0 x 10(12)-3.5 x 10(14) W/cm(2), with the intensity of the harmonics being 1-2 orders of magnitude smaller. The calculations incorporated systematically electronic structure and electron correlation effects in the discrete and in the continuous spectrum, for S-1, P-1, D-1, F-1, (1)G, and H-1 two-electron states of even and odd parity. They were done by implementing a time-independent, nonperturbative many-electron, many-photon theory which obtains cycle-averaged complex eigenvalues, whose real part gives the field-induced energy shift, Delta (w(1).F-1;omega (2),F-2,phi (2)), and the imaginary part is the multiphoton ionization rate, Gamma(omega (1),F-1;omega (2),F-2,phi (2)), where omega is the frequency. F is the field strength, and phi (2) is the phase difference. Through analysis and computation we show that, provided the intensities are weak, the dependence of Gamma(omega (1),F-1;omega (2),F-2,phi (2)) on phi (2) is simple. Specifically, for odd higher harmonics, Gamma varies linearly with cos(phi (2)) whilst for even higher harmonics it varies linearly with cos(2 phi (2)). These relations may turn out to be applicable to other atomic systems as well, and to provide a definition of the weak-field regime in the dichromatic case. When the combination of (omega (1),F-1) and (omega (2),F-2) is such that higher powers of cos(omega (2)) and cos(2 omega (2)) become important, these rules break down and we reach the strong-field regime. en
heal.publisher AMERICAN PHYSICAL SOC en
heal.journalName PHYSICAL REVIEW A en
dc.identifier.isi ISI:000166383000085 en
dc.identifier.volume 6301 en
dc.identifier.issue 1 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής