HEAL DSpace

He in two-color AC-fields of lambda(1)=248 nm and lambda(2) = (1/m) 248 nm, m=2,3,4. The rate of multiphoton ionization, for weak fields, is a simple function of the phase

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Mercouris, T en
dc.contributor.author Nicolaides, CA en
dc.date.accessioned 2014-03-01T01:51:09Z
dc.date.available 2014-03-01T01:51:09Z
dc.date.issued 2001 en
dc.identifier.issn 0921-4526 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/26240
dc.subject multiphoton ionization en
dc.subject coherent control of ionization en
dc.subject.classification Physics, Condensed Matter en
dc.subject.other ABOVE-THRESHOLD IONIZATION en
dc.subject.other INTENSE LASER FIELD en
dc.subject.other UNIMOLECULAR REACTIONS en
dc.subject.other ANGULAR-DISTRIBUTIONS en
dc.subject.other 2-COLOR IONIZATION en
dc.subject.other PHOTOIONIZATION en
dc.subject.other INTERFERENCE en
dc.subject.other FREQUENCIES en
dc.subject.other EXCITATION en
dc.subject.other HYDROGEN en
dc.title He in two-color AC-fields of lambda(1)=248 nm and lambda(2) = (1/m) 248 nm, m=2,3,4. The rate of multiphoton ionization, for weak fields, is a simple function of the phase en
heal.type journalArticle en
heal.language English en
heal.publicationDate 2001 en
heal.abstract Multiphoton ionization rates for He irradiated by a dichromatic AC-field consisting of the fundamental wavelength lambda = 248 nm and its second, third and fourth higher harmonics have been computed. The calculations incorporated systematically electronic structure and electron correlation effects in the discrete and in the continuous spectrum. They were done by implementing a time-independent. nonperturbative many-electron, many-photon theory (MEMPT) which obtains cycle-averaged complex eigenvalues, whose imaginary part is the multiphoton ionization rate, Gamma. It is shown that, provided the intensities are weak, the dependence of Gamma on phase difference phi (2), is simple. Specifically, for odd higher harmonics, Gamma varies linearly with cos(phi (2)) whilst for even higher harmonics it varies linearly with cos(acp,). These relations may turn out to be applicable to other atomic systems as well. and provide a definition of the weak-field regime in the dichromatic case. When the intensities are such that higher powers of cos(phi (2)) and cos(2 phi (2)) become important, these rules break down and we reach the strong-field regime. (C) 2001 Elsevier Science B.V. All rights reserved. en
heal.publisher ELSEVIER SCIENCE BV en
heal.journalName PHYSICA B en
dc.identifier.isi ISI:000167877900040 en
dc.identifier.volume 296 en
dc.identifier.issue 1-3 en
dc.identifier.spage 271 en
dc.identifier.epage 274 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής