dc.contributor.author |
Farenick, D |
en |
dc.contributor.author |
Psarrakos, P |
en |
dc.date.accessioned |
2014-03-01T01:51:27Z |
|
dc.date.available |
2014-03-01T01:51:27Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/26298 |
|
dc.subject |
Hilbert Module |
en |
dc.subject |
Matrix Algebra |
en |
dc.subject |
Matrix Inequalities |
en |
dc.subject |
Triangle Inequality |
en |
dc.title |
A triangle inequality in Hilbert modules over matrix algebras |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0024-3795(01)00267-1 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0024-3795(01)00267-1 |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
The matrix-valued triangle inequalities of R.C. Thompson [Pacific J. Math. 66 (1976) 285–290] are extended to sequences of matrices with real, complex, or quaternion entries. These new matrix inequalities, in turn, imply a natural formulation of the triangle inequality which is valid in certain Hilbert modules over real or complex semisimple matrix algebras. |
en |
heal.journalName |
Linear Algebra and Its Applications |
en |
dc.identifier.doi |
10.1016/S0024-3795(01)00267-1 |
en |