HEAL DSpace

APPLICATION OF MACHINE LEARNING TECHNIQUES ON THE DYNAMIC SECURITY OF ISOLATED POWER SYSTEMS WITH LARGE WIND POWER PENETRATION

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Georgiadis, D en
dc.contributor.author Karapidakis, E en
dc.contributor.author Hatziargyriou, N en
dc.date.accessioned 2014-03-01T01:51:28Z
dc.date.available 2014-03-01T01:51:28Z
dc.date.issued 2002 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/26310
dc.relation.uri http://lpis.csd.auth.gr/setn02/poster_papers/257.pdf en
dc.subject Integrated Control en
dc.subject Machine Learning en
dc.subject Power System en
dc.subject scada system en
dc.subject Security Assessment en
dc.subject Wind Power en
dc.subject Decision Tree en
dc.subject Neural Network en
dc.title APPLICATION OF MACHINE LEARNING TECHNIQUES ON THE DYNAMIC SECURITY OF ISOLATED POWER SYSTEMS WITH LARGE WIND POWER PENETRATION en
heal.type journalArticle en
heal.publicationDate 2002 en
heal.abstract In isolated power systems increased renewable power penetration with a high level of security can be achieved by the provision of advanced control tools to provide advice to the operators. The CARE system, an integrated control software that has been installed in the SCADA system of Crete includes on-line dynamic security assessment functions that supervise the security operating margins in en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής