dc.contributor.author |
Siettos, C |
en |
dc.contributor.author |
Graham, M |
en |
dc.contributor.author |
Kevrekidis, I |
en |
dc.date.accessioned |
2014-03-01T01:51:29Z |
|
dc.date.available |
2014-03-01T01:51:29Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/26321 |
|
dc.subject |
Bifurcation Analysis |
en |
dc.subject |
Bifurcation Diagram |
en |
dc.subject |
brownian dynamics |
en |
dc.subject |
Controller Design |
en |
dc.subject |
Liquid Crystalline Polymer |
en |
dc.subject |
Nematic Liquid Crystal |
en |
dc.subject |
Stochastic Differential Equation |
en |
dc.subject |
Stochastic Simulation |
en |
dc.subject |
Time Integration |
en |
dc.title |
Coarse Brownian Dynamics for Nematic Liquid Crystals: Bifurcation Diagrams via Stochastic Simulation |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1063/1.1572456 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1063/1.1572456 |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
We demonstrate how time-integration of stochastic differential equations(i.e. Brownian dynamics simulations) can be combined with continuum numericalbifurcation analysis techniques to analyze the dynamics of liquid crystallinepolymers (LCPs). Sidestepping the necessity of obtaining explicit closures, theapproach analyzes the (unavailable in closed form) coarse macroscopicequations, estimating the necessary quantities through appropriatelyinitialized, short bursts of Brownian dynamics |
en |
dc.identifier.doi |
10.1063/1.1572456 |
en |