dc.contributor.author |
Karachalios, N |
en |
dc.contributor.author |
Stavrakakis, N |
en |
dc.date.accessioned |
2014-03-01T01:51:31Z |
|
dc.date.available |
2014-03-01T01:51:31Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/26343 |
|
dc.subject |
Asymptotic Estimates |
en |
dc.subject |
Dynamic System |
en |
dc.subject |
Eigenvalue Problem |
en |
dc.subject |
Eigenvalues |
en |
dc.subject |
Fractal Dimension |
en |
dc.subject |
Global Attractor |
en |
dc.subject |
hausdor dimension |
en |
dc.subject |
Hyperbolic Equation |
en |
dc.subject |
Initial Condition |
en |
dc.subject |
semilinear wave equation |
en |
dc.subject |
sobolev space |
en |
dc.subject |
Unbounded Domain |
en |
dc.subject |
Wave Equation |
en |
dc.title |
Estimates on the dimension of a global attractor for a semilinear dissipative wave equation on $\mathbb R^N$ |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.3934/dcds.2002.8.939 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.3934/dcds.2002.8.939 |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
We discuss estimates of the Hausdor and fractal dimension of a global attractor for the semilinear wave equation utt + u t (x) u + f (u) = (x), x 2 RN, t 0, with the initial conditions u(x,0) = u0(x) and ut(x,0) = u1(x), where N 3, > 0 and ( (x)) 1 := g(x) lies in LN/2(RN) \ |
en |
heal.journalName |
Discrete and Continuous Dynamical Systems |
en |
dc.identifier.doi |
10.3934/dcds.2002.8.939 |
en |