dc.contributor.author |
Kaklis, P |
en |
dc.contributor.author |
Ginnis, A |
en |
dc.date.accessioned |
2014-03-01T01:51:42Z |
|
dc.date.available |
2014-03-01T01:51:42Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/26396 |
|
dc.subject |
Boundary Condition |
en |
dc.subject |
Cubic Spline |
en |
dc.subject |
Necessary and Sufficient Condition |
en |
dc.subject |
Numerical Solution |
en |
dc.title |
Planar C2 cubic spline interpolation under geometric boundary conditions |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/S0167-8396(02)00091-2 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/S0167-8396(02)00091-2 |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
This paper deals with the problem of C2 cubic spline interpolation under geometric boundary conditions, that is, fixing the unit-tangent vector and the curvature at the end points of a planar point-set. The solvability of the resulting non-linear problem, which is equivalent to a quadratic system with respect to the lengths of the boundary tangent vectors, is exhaustively studied, leading |
en |
heal.journalName |
Computer Aided Geometric Design |
en |
dc.identifier.doi |
10.1016/S0167-8396(02)00091-2 |
en |