dc.contributor.author |
Ambjørn, J |
en |
dc.contributor.author |
Anagnostopoulos, K |
en |
dc.contributor.author |
Nishimura, J |
en |
dc.contributor.author |
Verbaarschot, J |
en |
dc.date.accessioned |
2014-03-01T01:51:47Z |
|
dc.date.available |
2014-03-01T01:51:47Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/26441 |
|
dc.subject |
Distribution Function |
en |
dc.subject |
Exact Results |
en |
dc.subject |
Factorization Method |
en |
dc.subject |
First-order Phase Transition |
en |
dc.subject |
Monte Carlo Simulation |
en |
dc.subject |
Random Matrix Theory |
en |
dc.subject |
Thermodynamic Limit |
en |
dc.title |
The factorization method for systems with a complex action -a test in Random Matrix Theory for finite density QCD |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1088/1126-6708/2002/10/062 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1088/1126-6708/2002/10/062 |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
Monte Carlo simulations of systems with a complex action are known to beextremely difficult. A new approach to this problem based on a factorizationproperty of distribution functions of observables has been proposed recently.The method can be applied to any system with a complex action, and iteliminates the so-called overlap problem completely. We test the new approach |
en |
dc.identifier.doi |
10.1088/1126-6708/2002/10/062 |
en |