HEAL DSpace

A decision support system of evoked potentials for the classification of patients with first-episode schizophrenia

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Vasios, C en
dc.contributor.author Papageorgiou, C en
dc.contributor.author Matsopoulos, GK en
dc.contributor.author Nikita, KS en
dc.contributor.author Uzunoglu, N en
dc.date.accessioned 2014-03-01T01:51:49Z
dc.date.available 2014-03-01T01:51:49Z
dc.date.issued 2002 en
dc.identifier.issn 14331055 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/26460
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0141763722&partnerID=40&md5=4373f04210ef6039577ce4ee0aa2523b en
dc.subject Autoregression model en
dc.subject Classification en
dc.subject Event-related potentials en
dc.subject Feature extraction en
dc.subject First-episode schizophrenia en
dc.subject Neural network en
dc.subject.other adult en
dc.subject.other age en
dc.subject.other article en
dc.subject.other artificial neural network en
dc.subject.other clinical article en
dc.subject.other computer analysis en
dc.subject.other controlled study en
dc.subject.other decision support system en
dc.subject.other event related potential en
dc.subject.other evoked response en
dc.subject.other female en
dc.subject.other gender en
dc.subject.other human en
dc.subject.other information processing en
dc.subject.other male en
dc.subject.other patient coding en
dc.subject.other regression analysis en
dc.subject.other schizophrenia en
dc.subject.other socioeconomics en
dc.subject.other working memory en
dc.title A decision support system of evoked potentials for the classification of patients with first-episode schizophrenia en
heal.type journalArticle en
heal.publicationDate 2002 en
heal.abstract Background: Recently it has been shown that the second-pass parsing process of information processing, as indexed by the P600 component of event-related potentials (ERPs), elicited during a working memory (WM) test, is impaired in first episode schizophrenic (FES) patients. Objective: The purpose of this study is to develop a decision support system - based on artificial neural networks (ANN) technology - for the classification of patients experiencing FES compared to healthy controls, utilizing the P600. Method: We examined 14 FES patients and 23 healthy controls, matched for age, sex and educational level. The proposed system comprises two levels: the feature extraction level and the classification level. The former is based on the implementation of an autoregression model to estimate the corresponding coefficients, which form the input vector for the later level. The classification level consists of a multi-layer neural network. Results: The performance of the system in terms of classification rate has been tested for a total of 15 abductions of each subject and for a specific order of the autoregression model according to the modified Schwarz criterion. The best classification rate, up to 100% has been achieved for the (C4-T6)/2 abduction compared to the other abductions and for all the subjects. Furthermore, the performance of the classifier for this abduction is consistent against the other adductions and for all the specific orders of the autoregression model implemented. Conclusions: The findings indicate that activities related to the P600 component during a WM task and explored by the proposed system may be involved in FES. Additionally, the findings also indicate that this approach may significantly facilitate the computer-aided analysis of ERPs. en
heal.journalName German Journal of Psychiatry en
dc.identifier.volume 5 en
dc.identifier.issue 3 en
dc.identifier.spage 78 en
dc.identifier.epage 84 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής