HEAL DSpace

Calibration of aquifer models using neural network parameterization with a simple regularization

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Mantoglou, A en
dc.date.accessioned 2014-03-01T01:51:50Z
dc.date.available 2014-03-01T01:51:50Z
dc.date.issued 2002 en
dc.identifier.issn 01447815 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/26476
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0141745896&partnerID=40&md5=824e08bbf4e6e4a02770066e3cbd50bb en
dc.subject Aquifer modelling en
dc.subject Inverse modelling en
dc.subject Model calibration en
dc.subject Neural networks en
dc.subject Parameter estimation en
dc.subject Ridge functions en
dc.subject.other Calibration en
dc.subject.other Functions en
dc.subject.other Neural networks en
dc.subject.other Topology en
dc.subject.other Neural network parametrization en
dc.subject.other Aquifers en
dc.subject.other aquifer en
dc.subject.other artificial neural network en
dc.subject.other groundwater en
dc.subject.other parameterization en
dc.subject.other transmissivity en
dc.title Calibration of aquifer models using neural network parameterization with a simple regularization en
heal.type journalArticle en
heal.publicationDate 2002 en
heal.abstract A parameterization of transmissivity based on neural networks is developed. By defining an appropriate network topology it is possible to express the two-dimensional transmissivity map as a sum of one-dimensional functions similarly to the turning bands method. By selecting appropriate neural activation functions it is possible to get flexible and concise parameterizations that can handle gradual as well as abrupt large-scale changes of the real transmissivity map. A simple regularization is proposed that can dampen the erratic high frequency components in the estimated parameters. Various examples indicate that the proposed parameterization can handle well various types of transmissivity variations and is particularly suited when the true transmissivity map exhibits specific sorts of heterogeneity with large anisotropies or abrupt changes along lines. en
heal.journalName IAHS-AISH Publication en
dc.identifier.issue 277 en
dc.identifier.spage 219 en
dc.identifier.epage 226 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής