HEAL DSpace

Unsupervised stereoscopic video object segmentation based on active contours and retrainable neural networks

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Ntalianis, K en
dc.contributor.author Doulamis, A en
dc.contributor.author Doulamis, N en
dc.date.accessioned 2014-03-01T01:52:02Z
dc.date.available 2014-03-01T01:52:02Z
dc.date.issued 2002 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/26535
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-4944239425&partnerID=40&md5=36264082c6d571d910eeb2123ea0f94e en
dc.subject Active contours en
dc.subject Adaptive neural networks en
dc.subject Depth based segmentation en
dc.subject MPEG-4 en
dc.subject Video objects en
dc.subject.other Algorithms en
dc.subject.other Image segmentation en
dc.subject.other Information analysis en
dc.subject.other Knowledge acquisition en
dc.subject.other Multimedia systems en
dc.subject.other Performance en
dc.subject.other Vectors en
dc.subject.other Active contours en
dc.subject.other Adaptive neural networks en
dc.subject.other Depth based segmentation en
dc.subject.other MPEG-4 en
dc.subject.other Video objects en
dc.subject.other Neural networks en
dc.title Unsupervised stereoscopic video object segmentation based on active contours and retrainable neural networks en
heal.type journalArticle en
heal.publicationDate 2002 en
heal.abstract In this paper an unsupervised scheme for stereoscopic video object extraction is presented based on a neural network classifier. More particularly, the procedure includes: (A) A retraining algorithm for adapting neural network weights to current conditions and (B) An active contour module, which extracts the retraining set. The retraining algorithm takes into consideration both the former and the current network knowledge in order to achieve good generalization and reduce retraining time. The retrained network performs video object tracking to the rest of the frames within a shot. Retraining set extraction is accomplished by utilizing depth information, provided by stereoscopic video analysis and incorporating an active contour. Finally results are presented which illustrate the promising performance of the proposed approach in real life experiments. en
heal.publisher World Scientific and Engineering Academy and Society en
heal.journalName Recent Advances in Circuits, Systems and Signal Processing en
dc.identifier.spage 374 en
dc.identifier.epage 379 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής