HEAL DSpace

Values of minors of an infinite family of D-optimal designs and their application to the growth problem

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Koukouvinos, C en
dc.contributor.author Mitrouli, M en
dc.contributor.author Seberry, J en
dc.date.accessioned 2014-03-01T01:52:02Z
dc.date.available 2014-03-01T01:52:02Z
dc.date.issued 2002 en
dc.identifier.issn 08954798 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/26536
dc.subject Complete pivoting en
dc.subject D-optimal designs en
dc.subject Gaussian elimination en
dc.subject Growth en
dc.subject Supplementary difference sets en
dc.subject Symmetric balanced incomplete block designs en
dc.title Values of minors of an infinite family of D-optimal designs and their application to the growth problem en
heal.type journalArticle en
heal.identifier.primary 10.1137/S0895479800373644 en
heal.identifier.secondary http://dx.doi.org/10.1137/S0895479800373644 en
heal.publicationDate 2002 en
heal.abstract We obtain explicit formulae for the values of the 2v - j minors, j = 0,1,2, of Doptimal designs of order 2v = x2 + y2, v odd, where the design is constructed using two circulant or type 1 incidence matrices of 2- {2s2 + 2s + 1; s2, s2; s(s - 1) } supplementary difference sets (sds). This allows us to obtain information on the growth problem for families of matrices with moderate growth. Some of our theoretical formulae imply growth greater than 2(2s2 + 2s + 1) but experimentation has not yet supported this result. An open problem remains to establish whether the (1, -1) completely pivoted (CP) incidence matrices of 2 - {2s2 + 2s + 1; s2, s2; s(s - 1)} sds which yield D-optimal designs can have growth greater than 2v. en
heal.journalName SIAM Journal on Matrix Analysis and Applications en
dc.identifier.doi 10.1137/S0895479800373644 en
dc.identifier.volume 23 en
dc.identifier.issue 1 en
dc.identifier.spage 1 en
dc.identifier.epage 14 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής