dc.contributor.author |
Karachalios, NI |
en |
dc.contributor.author |
Stavrakakis, NM |
en |
dc.date.accessioned |
2014-03-01T01:52:05Z |
|
dc.date.available |
2014-03-01T01:52:05Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.issn |
1078-0947 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/26552 |
|
dc.subject |
dynamical systems |
en |
dc.subject |
attractors |
en |
dc.subject |
hyperbolic equations |
en |
dc.subject |
unbounded domains |
en |
dc.subject |
generalized Sobolev spaces |
en |
dc.subject |
Hausdorff dimension |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
EVOLUTION-EQUATIONS |
en |
dc.subject.other |
UNBOUNDED-DOMAINS |
en |
dc.subject.other |
NONEXISTENCE |
en |
dc.subject.other |
EXISTENCE |
en |
dc.title |
Estimates on the dimension of a global attractor for a semilinear dissipative wave equation on R-N |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
We discuss estimates of the Hausdorff and fractal dimension of a global attractor for the semilinear wave equation u(tt) + deltau(t) - phi(x)Deltau + lambdaf(u) = eta(x), x is an element of R-N, t greater than or equal to 0, with the initial conditions u(x, 0) = u(0) (x) and ut (x, 0) = u(1) (x), where N greater than or equal to 3, delta > 0 and (phi(x))(-1) := g(x) lies in L-N/2(RN) boolean AND L-infinity(RN). The energy space chi(0) = D-1,D-2(R-N) x L-g(2)(R-N) is introduced, to overcome the difficulties related with the non-compactness of operators, which arise in unbounded domains. The estimates on the Hausdorff dimension are in terms of given parameters, due to an asymptotic estimate for the eigenvalues mu of the eigenvalue problem -phi(x)Deltau = muu, x is an element of R-N. |
en |
heal.publisher |
AMER INST MATHEMATICAL SCIENCES |
en |
heal.journalName |
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS |
en |
dc.identifier.isi |
ISI:000178082600009 |
en |
dc.identifier.volume |
8 |
en |
dc.identifier.issue |
4 |
en |
dc.identifier.spage |
939 |
en |
dc.identifier.epage |
951 |
en |