dc.contributor.author |
Tsitouras, C |
en |
dc.date.accessioned |
2014-03-01T01:52:05Z |
|
dc.date.available |
2014-03-01T01:52:05Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.issn |
0096-3003 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/26555 |
|
dc.subject |
explicit Numerov methods |
en |
dc.subject |
periodic ODEs |
en |
dc.subject |
phase lag |
en |
dc.subject |
dissipation |
en |
dc.subject |
sixth algebraic order |
en |
dc.subject.classification |
Mathematics, Applied |
en |
dc.subject.other |
INITIAL-VALUE-PROBLEMS |
en |
dc.subject.other |
MINIMAL PHASE-LAG |
en |
dc.subject.other |
NOUMEROV-TYPE METHOD |
en |
dc.subject.other |
NUMERICAL-INTEGRATION |
en |
dc.subject.other |
ORDER METHODS |
en |
dc.subject.other |
RUNGE-KUTTA |
en |
dc.title |
Families of explicit two-step methods for integration of problems with oscillating solutions |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
We study a new sixth algebraic order, explicit Numerov-type family of methods. Using every free parameter of the family, even its nodes, we manage to derive two methods. The first with phase-lag of order 12, while the other method has one stage less. This is a considerable improvement over the 10th order phase-lag order methods found in the literature until now. Numerical experiments confirm the superiority of our new methods over older methods. (C) 2002 Elsevier Science Inc. All rights reserved. |
en |
heal.publisher |
ELSEVIER SCIENCE INC |
en |
heal.journalName |
APPLIED MATHEMATICS AND COMPUTATION |
en |
dc.identifier.isi |
ISI:000178888700014 |
en |
dc.identifier.volume |
135 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
169 |
en |
dc.identifier.epage |
178 |
en |