dc.contributor.author |
Haring-Oldenburg, R |
en |
dc.contributor.author |
Lambropoulou, S |
en |
dc.date.accessioned |
2014-03-01T01:52:06Z |
|
dc.date.available |
2014-03-01T01:52:06Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.issn |
0218-2165 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/26565 |
|
dc.subject.classification |
Mathematics |
en |
dc.subject.other |
HECKE ALGEBRAS |
en |
dc.subject.other |
INVARIANTS |
en |
dc.subject.other |
LINKS |
en |
dc.subject.other |
REPRESENTATIONS |
en |
dc.subject.other |
3-MANIFOLDS |
en |
dc.title |
Knot theory in handlebodies |
en |
heal.type |
journalArticle |
en |
heal.language |
English |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
We consider oriented knots and links in a handlebody of genus g through appropriate braid representatives in S-3, which are elements of the braid groups B-g,B-n. We prove a geometric version of the Markov theorem for braid equivalence in the handlebody, which is based on the L-moves. Using this we then prove two algebraic versions of the Markov theorem. The first one uses the L-moves. The second one uses the Markov moves and conjugation in the groups B-g,B-n. We show that not all conjugations correspond to isotopies. |
en |
heal.publisher |
WORLD SCIENTIFIC PUBL CO PTE LTD |
en |
heal.journalName |
JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS |
en |
dc.identifier.isi |
ISI:000178529800006 |
en |
dc.identifier.volume |
11 |
en |
dc.identifier.issue |
6 |
en |
dc.identifier.spage |
921 |
en |
dc.identifier.epage |
943 |
en |