HEAL DSpace

Physical constraints on nonstationary states and nonexponential decay

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Nicolaides, CA en
dc.date.accessioned 2014-03-01T01:52:08Z
dc.date.available 2014-03-01T01:52:08Z
dc.date.issued 2002 en
dc.identifier.issn 1050-2947 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/26578
dc.subject.classification Optics en
dc.subject.classification Physics, Atomic, Molecular & Chemical en
dc.subject.other TIME-DEPENDENCE en
dc.subject.other AUTOIONIZING STATES en
dc.subject.other EXPONENTIAL DECAY en
dc.subject.other QUANTUM ZENO en
dc.subject.other RESONANCES en
dc.subject.other PROBABILITY en
dc.subject.other THRESHOLD en
dc.subject.other ENERGIES en
dc.subject.other HE-2(2+) en
dc.subject.other BEHAVIOR en
dc.title Physical constraints on nonstationary states and nonexponential decay en
heal.type journalArticle en
heal.identifier.secondary 022118 en
heal.language English en
heal.publicationDate 2002 en
heal.abstract For the understanding of irreversibility at the quantum level, the formation and decay of transient (unstable) states play a fundamental role. If the system is treated within Hermitian quantum mechanics, the resulting energy distribution of the resonance state, whose Fourier transform yields the time-dependent probability of decay, P(t), is real. The physical constraint of the lower bound in the energy spectrum introduces "memory," and causes nonexponential decay (NED) to set in after t>tau, where tau is the lifetime defined by exponential decay. The closer to threshold the decaying state is, the earlier NED appears. Apart from the constraint of Egreater than or equal to0, the constraint of tgreater than or equal to0 must be accounted for at the same time. It results from the discontinuity at t=0 of the solution of the time-dependent Schrodinger equation, which breaks the unitarity associated with the S matrix and gives rise to a complex energy distribution, as a manifestation of the non-Hermitian property of the decaying states. For a narrow isolated resonance state, for which the self-energy is essentially energy-independent, analytic results for P-NED(t) obtained from semiclassical path-integral calculations agree with the quantum-mechanical ones when both physical constraints E>0 and t>0 are taken into account. As an example of the difference in the magnitude of the P-NED(t) when using a real and a complex energy distribution, application is made to the decay of the unstable He-2(2+) (1)Sigma(g)(+) ground molecular state. en
heal.publisher AMERICAN PHYSICAL SOC en
heal.journalName PHYSICAL REVIEW A en
dc.identifier.isi ISI:000177872600026 en
dc.identifier.volume 66 en
dc.identifier.issue 2 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής