dc.contributor.author |
Axenides, M |
en |
dc.contributor.author |
Floratos, EG |
en |
dc.contributor.author |
Perivolaropoulos, L |
en |
dc.date.accessioned |
2014-03-01T01:52:08Z |
|
dc.date.available |
2014-03-01T01:52:08Z |
|
dc.date.issued |
2002 |
en |
dc.identifier.issn |
0556-2821 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/26583 |
|
dc.subject.classification |
Astronomy & Astrophysics |
en |
dc.subject.classification |
Physics, Particles & Fields |
en |
dc.subject.other |
QUANTUM-MECHANICS |
en |
dc.subject.other |
MEMBRANES |
en |
dc.subject.other |
MODEL |
en |
dc.subject.other |
DYNAMICS |
en |
dc.title |
Rotating toroidal branes in supermembrane and matrix theory |
en |
heal.type |
journalArticle |
en |
heal.identifier.secondary |
085006 |
en |
heal.language |
English |
en |
heal.publicationDate |
2002 |
en |
heal.abstract |
In the light cone frame, where the supermembrane theory and the matrix model are strikingly similar, the equations of motion admit an elegant complexification in even dimensional spaces. Although the explicit rotational symmetry of the target space is lost, the remaining unitary symmetries, apart from providing a simple and unifying description of all known solutions, suggest new ones for rotating spherical and toroidal membranes. In this framework the angular momentum is represented by U(1) charges which balance the nonlinear attractive forces of the membrane. We examine in detail a six-dimensional rotating toroidal membrane solution which lives in a three-torus T-3 and admits stable radial modes. In matrix theory it corresponds to a toroidal (N-D0)-brane bound state. We demonstrate its existence and discuss its radial stability. |
en |
heal.publisher |
AMERICAN PHYSICAL SOC |
en |
heal.journalName |
PHYSICAL REVIEW D |
en |
dc.identifier.isi |
ISI:000179081500058 |
en |
dc.identifier.volume |
66 |
en |
dc.identifier.issue |
8 |
en |