HEAL DSpace

The Hurst phenomenon and fractional Gaussian noise made easy

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Koutsoyiannis, D en
dc.date.accessioned 2014-03-01T01:52:13Z
dc.date.available 2014-03-01T01:52:13Z
dc.date.issued 2002 en
dc.identifier.issn 0262-6667 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/26598
dc.subject Hurst phenomenon en
dc.subject fractional Gaussian noise en
dc.subject persistence en
dc.subject climate change en
dc.subject.classification Water Resources en
dc.subject.other HYDROLOGIC TIME-SERIES en
dc.subject.other COMPUTER EXPERIMENTS en
dc.subject.other SIMULATION en
dc.subject.other PERSISTENCE en
dc.subject.other STREAMFLOW en
dc.subject.other MODELS en
dc.subject.other TRENDS en
dc.title The Hurst phenomenon and fractional Gaussian noise made easy en
heal.type journalArticle en
heal.language English en
heal.publicationDate 2002 en
heal.abstract The Hurst phenomenon, which characterizes hydrological and other geophysical time series, is formulated and studied in an easy manner in terms of the variance and autocorrelation of a stochastic process on multiple temporal scales. In addition, a simple explanation of the Hurst phenomenon based on the fluctuation of a hydrological process upon different temporal scales is presented. The stochastic process that was devised to represent the Hurst phenomenon, i.e. the fractional Gaussian noise, is also studied on the same grounds. Based on its studied properties, three simple and fast methods to generate fractional Gaussian noise, or good approximations of it, are proposed. en
heal.publisher IAHS PRESS, INST HYDROLOGY en
heal.journalName HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES en
dc.identifier.isi ISI:000177622000003 en
dc.identifier.volume 47 en
dc.identifier.issue 4 en
dc.identifier.spage 573 en
dc.identifier.epage 595 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής