dc.contributor.author | Tzafestas, G | en |
dc.contributor.author | Raptis, N | en |
dc.contributor.author | Pimenides, T | en |
dc.date.accessioned | 2014-03-01T01:52:40Z | |
dc.date.available | 2014-03-01T01:52:40Z | |
dc.date.issued | 2003 | en |
dc.identifier.uri | https://dspace.lib.ntua.gr/xmlui/handle/123456789/26684 | |
dc.relation.uri | http://www.ici.ro/eng/SIC/sic2003_2/art2.pdf | en |
dc.subject | Fuzzy System | en |
dc.subject | Genetic Algorithm | en |
dc.subject | Level Set | en |
dc.subject | Point of View | en |
dc.subject | Problem Solving | en |
dc.subject | Stochastic Search | en |
dc.title | Genetic Algorithm-Based Fuzzy System Design Using a New Representation Scheme | en |
heal.type | journalArticle | en |
heal.publicationDate | 2003 | en |
heal.abstract | Abstracts: Genetic algorithms (GA’s) are powerful stochastic search algorithms for general problem solving. Their effectiveness asa,tool for evolving ,other systems has ,been early identified and has gained increasing research interest. Fuzzy systems may stronglybenefit fromGA’ ssince theyinvolve a quite large number of parametersthat needto be tuned forth e systemto achieve the required performance. Such parameters include (but are not limited | en |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |