HEAL DSpace

CT-MRI automatic surface-based registration schemes combining global and local optimization techniques

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Matsopoulos, GK en
dc.contributor.author Delibasis, KK en
dc.contributor.author Mouravliansky, NA en
dc.contributor.author Asvestas, PA en
dc.contributor.author Nikita, KS en
dc.contributor.author Kouloulias, VE en
dc.contributor.author Uzunoglu, NK en
dc.date.accessioned 2014-03-01T01:52:57Z
dc.date.available 2014-03-01T01:52:57Z
dc.date.issued 2003 en
dc.identifier.issn 09287329 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/26801
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0142125775&partnerID=40&md5=0dd0c1ad6ab01e9669eb02c6bdbc0e65 en
dc.subject.other analytic method en
dc.subject.other article en
dc.subject.other automation en
dc.subject.other brain radiography en
dc.subject.other computer assisted tomography en
dc.subject.other genetic algorithm en
dc.subject.other human en
dc.subject.other information processing en
dc.subject.other intermethod comparison en
dc.subject.other nuclear magnetic resonance imaging en
dc.subject.other priority journal en
dc.subject.other qualitative analysis en
dc.subject.other quantitative analysis en
dc.subject.other registration en
dc.subject.other simulation en
dc.subject.other technique en
dc.subject.other validation process en
dc.subject.other Algorithms en
dc.subject.other Brain en
dc.subject.other Humans en
dc.subject.other Imaging, Three-Dimensional en
dc.subject.other Magnetic Resonance Imaging en
dc.subject.other Models, Biological en
dc.subject.other Tomography, X-Ray Computed en
dc.title CT-MRI automatic surface-based registration schemes combining global and local optimization techniques en
heal.type journalArticle en
heal.publicationDate 2003 en
heal.abstract Medical image registration is commonly required in order to combine the complementary information provided by different medical imaging modalities. In this paper, a new automatic registration scheme is proposed to register 3-D CT-MR head images and is currently tested on a clinical environment. The proposed scheme, after the preprocessing and the outer surface extraction of the data, is based on the use the rigid transformation method, in conjunction with a combination of global and local optimization techniques. Analytically, the paper exploits the optimization efficiency of three widely used optimization techniques, in obtaining the parameters of the rigid transformation model: the Downhill Simplex Method, the Genetic Algorithms and the Simulated Annealing. These optimization techniques are further combined by the sequential application of the Powell optimization method in order to refine the registration and increase its accuracy. A comparative study involving these optimization techniques in conjunction with the rigid transformation, and two other methods, the ICP and the manual methods, is also presented, for a sufficient number of clinical CT-MR brain images. Finally, quantitative and qualitative results are also presented to validate the performance of these automatic surface-based registration schemes, in terms of consistency and accuracy. Throughout of this study, the automatic registration scheme comprising of the rigid transformation in conjunction with the Simulated Annealing method sequentially combined with the Powell method has been performed superior regarding all the other compared registration schemes. en
heal.journalName Technology and Health Care en
dc.identifier.volume 11 en
dc.identifier.issue 4 en
dc.identifier.spage 219 en
dc.identifier.epage 232 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής