dc.contributor.author |
Evangelaras, H |
en |
dc.contributor.author |
Koukouvinos, C |
en |
dc.date.accessioned |
2014-03-01T01:53:01Z |
|
dc.date.available |
2014-03-01T01:53:01Z |
|
dc.date.issued |
2003 |
en |
dc.identifier.issn |
15389472 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/26827 |
|
dc.relation.uri |
http://www.scopus.com/inward/record.url?eid=2-s2.0-3042601640&partnerID=40&md5=e19243dc0c761c6fc1e11b1b614c2e15 |
en |
dc.subject |
Factorial designs |
en |
dc.subject |
Generalized aberration |
en |
dc.subject |
Generalized resolution |
en |
dc.subject |
Generalized wordlength pattern |
en |
dc.subject |
Hadamard matrices |
en |
dc.subject |
Inequivalent projections |
en |
dc.subject |
Screening designs |
en |
dc.title |
Screening properties and design selection of certain two-level designs |
en |
heal.type |
journalArticle |
en |
heal.publicationDate |
2003 |
en |
heal.abstract |
Screening designs are useful for situations where a large number of factors (q) is examined but only few (k) of these are expected to be important. It is of practical interest for a given k to know all the inequivalent projections of the design into the k dimensions. In this paper we give all the inequivalent projections of inequivalent Hadamard matrices of order 28 into k=3 and 4 dimensions and furthermore, we give partial results for k=5. Then, we sort these projections according to their generalized resolution and their generalized aberration. Copyright © 2003 JMASM, Inc. |
en |
heal.journalName |
Journal of Modern Applied Statistical Methods |
en |
dc.identifier.volume |
2 |
en |
dc.identifier.issue |
1 |
en |
dc.identifier.spage |
87 |
en |
dc.identifier.epage |
107 |
en |