HEAL DSpace

Some results on Kharaghani type orthogonal designs

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Georgiou, S en
dc.contributor.author Koukouvinos, C en
dc.contributor.author Seberry, J en
dc.date.accessioned 2014-03-01T01:53:04Z
dc.date.available 2014-03-01T01:53:04Z
dc.date.issued 2003 en
dc.identifier.issn 03153681 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/26835
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-0038687485&partnerID=40&md5=fd2733675bd70d9e2c5302fc08122521 en
dc.subject Amicable sets en
dc.subject Hall polynomial en
dc.subject Kharaghani type orthogonal designs en
dc.subject Orthogonal designs en
dc.subject Sequences en
dc.title Some results on Kharaghani type orthogonal designs en
heal.type journalArticle en
heal.publicationDate 2003 en
heal.abstract In this paper we give a general theorem which can be used to multiply the length of amicable sequences keeping the amicability property and the type of the sequences. As a consequence we have that if there exist two, four or eight amicable sequences of length m and type (a1, a2), (a1, a2, a3, a4) or (a1,a2,...,a8) then there exist amicable sequences of length l = 0 (mod m) and of the same type. We also present a theorem that produces a set of 2v amicable sequences from a set of v (not necessary amicable) sequences and a construction method for amicable sequences of type (a1, a1, a2, a2,..., av, av) from v pairs of disjoint (0, ±1) amicable sequences. Using these results we can obtain many infinite classes of Kharaghani type orthogonal designs. Actually, if there exists an Kharaghani type orthogonal design of order n and of type (a1, a2,..., av), which is constructed from sequences, then there exists an infinite family of Kharaghani type orthogonal designs of the same type which is constructed from appropriate sequences. en
heal.journalName Utilitas Mathematica en
dc.identifier.volume 63 en
dc.identifier.spage 43 en
dc.identifier.epage 52 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής