HEAL DSpace

Implicit polynomial support optimized for sparseness

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Emiris, IZ en
dc.contributor.author Kotsireas, IS en
dc.date.accessioned 2014-03-01T01:53:07Z
dc.date.available 2014-03-01T01:53:07Z
dc.date.issued 2003 en
dc.identifier.issn 0302-9743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/26863
dc.subject.classification Computer Science, Theory & Methods en
dc.subject.other RESULTANT en
dc.subject.other POLYTOPE en
dc.title Implicit polynomial support optimized for sparseness en
heal.type journalArticle en
heal.language English en
heal.publicationDate 2003 en
heal.abstract We propose the use of various tools from algebraic geometry, with an emphasis on toric (or sparse) elimination theory, in order to predict the support of the implicit equation of a parametric hypersurface. The problem of implicitization lies at the heart of several algorithms in geometric modeling and computer-aided design, two of which (based on interpolation) axe immediately improved by our contribution. We believe that other methods of implicitization shall be-Able to benefit from our work. More specifically, we use information on,the support of the toric resultant, and degree bounds, formulated in terms of the mixed volume of Newton polytopes. The computed support of the implicit equation depends on the sparseness of the parametric expressions and is much tighter than the one predicted by degree arguments. Our Maple implementation illustrates many cases in which we obtain the exact support. in addition, it is possible to specify certain coefficients of the implicit equation. en
heal.publisher SPRINGER-VERLAG BERLIN en
heal.journalName COMPUTATIONAL SCIENCE AND ITS APPLICATIONS - ICCSA 2003, PT 3, PROCEEDINGS en
heal.bookName LECTURE NOTES IN COMPUTER SCIENCE en
dc.identifier.isi ISI:000184327900041 en
dc.identifier.volume 2669 en
dc.identifier.spage 397 en
dc.identifier.epage 406 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής