dc.contributor.author |
Kouris, I |
en |
dc.contributor.author |
Makris, C |
en |
dc.contributor.author |
Tsakalidis, A |
en |
dc.date.accessioned |
2014-03-01T01:53:20Z |
|
dc.date.available |
2014-03-01T01:53:20Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/26959 |
|
dc.subject |
Association Rule |
en |
dc.subject |
Data Mining |
en |
dc.title |
Efficient automatic discovery of 'hot' itemsets |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1016/j.ipl.2004.01.013 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1016/j.ipl.2004.01.013 |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
In real life applications the dominant model of the single support, which assumed all itemsets to be of the same nature and importance proved defective. The non-homogeneity of the itemsets on one hand and the non-uniformity of their number of appearances on the other require that we use different approaches. Some techniques have been proposed thus far trying to address |
en |
heal.journalName |
Information Processing Letters |
en |
dc.identifier.doi |
10.1016/j.ipl.2004.01.013 |
en |