dc.contributor.author |
Petropoulos, N |
en |
dc.date.accessioned |
2014-03-01T01:53:23Z |
|
dc.date.available |
2014-03-01T01:53:23Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/26999 |
|
dc.relation.uri |
http://arxiv.org/abs/hep-ph/0402136 |
en |
dc.subject |
Chiral Phase Transition |
en |
dc.subject |
Composition Operator |
en |
dc.subject |
Effective Mass |
en |
dc.subject |
Effective Potential |
en |
dc.subject |
Finite Temperature |
en |
dc.subject |
First-order Phase Transition |
en |
dc.subject |
High Temperature |
en |
dc.subject |
Linear Sigma Model |
en |
dc.subject |
Low Temperature |
en |
dc.subject |
Quantum Fluctuation |
en |
dc.subject |
Small Deviation |
en |
dc.subject |
System Approach |
en |
dc.subject |
Thermal Effects |
en |
dc.subject |
Thermal Field Theory |
en |
dc.subject |
cornwall jackiw tomboulis |
en |
dc.subject |
Phase Transition |
en |
dc.subject |
Real Time |
en |
dc.subject |
Second Order |
en |
dc.title |
Linear sigma model at finite temperature |
en |
heal.type |
journalArticle |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
The chiral phase transition is investigated within the framework of thermalfield theory using the O(N) linear sigma model as an effective theory. Wecalculate the thermal effective potential by using theCornwall-Jackiw-Tomboulis formalism of composite operators. The thermaleffective potential is calculated for N=4 involving as usual the sigma and thethree pions, and in the large-N approximation involving |
en |