dc.contributor.author |
Antonopoulos, C |
en |
dc.date.accessioned |
2014-03-01T01:53:27Z |
|
dc.date.available |
2014-03-01T01:53:27Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/27018 |
|
dc.subject |
Moving Object |
en |
dc.subject |
Quantum Theory |
en |
dc.title |
Moving Without Being Where You’re Not; A Non-Bivalent Way |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1007/s10838-004-2095-0 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1007/s10838-004-2095-0 |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
The classical response to Zeno’s paradoxes goes like this: ‘Motion cannot properly be defined within an instant. Only over a period’ (Vlastos.) I show that this ob-jection is exactly what it takes for Zeno to be right. If motion cannot be defined at an instant, even though the object is always moving at that instant, motion cannot be defined at |
en |
heal.journalName |
Journal for General Philosophy of Science |
en |
dc.identifier.doi |
10.1007/s10838-004-2095-0 |
en |