dc.contributor.author |
Karakasis, M |
en |
dc.contributor.author |
Giannakoglou, K |
en |
dc.date.accessioned |
2014-03-01T01:53:28Z |
|
dc.date.available |
2014-03-01T01:53:28Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/27029 |
|
dc.relation.uri |
http://velos0.ltt.mech.ntua.gr/research/pdfs/3_070.pdf |
en |
dc.subject |
Evaluation Model |
en |
dc.subject |
Multi Objective Evolutionary Algorithm |
en |
dc.subject |
Multi Objective Optimization |
en |
dc.subject |
Radial Basis Function Network |
en |
dc.subject |
Self Organized Map |
en |
dc.subject |
Multi Objective Optimization Problem |
en |
dc.title |
ON THE USE OF SURROGATE EVALUATION MODELS IN MULTI-OBJECTIVE EVOLUTIONARY ALGORITHMS |
en |
heal.type |
journalArticle |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
The use of surrogate evaluation models has found widespread use in evolu- tionary optimization. Regardless of the model itself and the implementation scheme, ap- proximation models are used to replace exact but costly evaluations, leading thus to lower design computational cost. However, the gain in computational cost reduces consider- ably in Multi-Objective optimization problems, where the prediction capability of surrogate |
en |