dc.contributor.author |
Georgiou, V |
en |
dc.contributor.author |
Pavlidis, N |
en |
dc.contributor.author |
Parsopoulos, K |
en |
dc.contributor.author |
Alevizos, D |
en |
dc.contributor.author |
Vrahatis, M |
en |
dc.date.accessioned |
2014-03-01T01:53:29Z |
|
dc.date.available |
2014-03-01T01:53:29Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/27033 |
|
dc.relation.uri |
http://www.math.upatras.gr/~npav/papers/GPPAV_PNN.pdf |
en |
dc.subject |
particle swarm optimizer |
en |
dc.subject |
Perforation |
en |
dc.subject |
Probabilistic Neural Network |
en |
dc.subject |
Sampling Technique |
en |
dc.subject |
Statistical Test |
en |
dc.subject |
Neural Network |
en |
dc.subject |
Particle Swarm Optimization Algorithm |
en |
dc.title |
Optimizing the Performance of Probabilistic Neural Networks in a Bionformatics Task |
en |
heal.type |
journalArticle |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
A self adaptive probabilistic neural network model is proposed. The model incorporates the Particle Swarm Optimization algorithm to optimize the spread parameter of the probabilistic neural network, enhancing thus its perfor- mance. The proposed approach is tested on two data sets from the eld of bioinformatics, with promising results. The performance of the proposed model is compared to probabilistic neural |
en |