dc.contributor.author |
Kavallaris, N |
en |
dc.contributor.author |
Zisis, V |
en |
dc.date.accessioned |
2014-03-01T01:53:31Z |
|
dc.date.available |
2014-03-01T01:53:31Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/27063 |
|
dc.subject |
Coordinate System |
en |
dc.subject |
Dual Integral Equation |
en |
dc.subject |
Heat Conduction |
en |
dc.subject |
Integral Equation |
en |
dc.subject |
Mixed Boundary Condition |
en |
dc.subject |
Potential Function |
en |
dc.subject |
Temperature Distribution |
en |
dc.title |
The dual integral equation method in hydromechanical systems |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1155/S1110757X04407153 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1155/S1110757X04407153 |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
Some hydromechanical systems are investigated by applying the dual integral equation method. In developing this method we suggest from elementary appropriate solutions of Laplace's equation, in the domain under consideration, the introduction of a poten- tial function which provides useful combinations in cylindrical and spherical coordinates systems. Since the mixed boundary conditions and the form of the potential function are |
en |
heal.journalName |
Journal of Applied Mathematics |
en |
dc.identifier.doi |
10.1155/S1110757X04407153 |
en |