HEAL DSpace

Approximation Methods for Nonconvex Parabolic Optimal Control Problems Using Relaxed Controls

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Chryssoverghi, I en
dc.date.accessioned 2014-03-01T01:53:38Z
dc.date.available 2014-03-01T01:53:38Z
dc.date.issued 2004 en
dc.identifier.issn 03029743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/27084
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-35048851075&partnerID=40&md5=d64347418215b12bb27234079fb5ab82 en
dc.title Approximation Methods for Nonconvex Parabolic Optimal Control Problems Using Relaxed Controls en
heal.type journalArticle en
heal.publicationDate 2004 en
heal.abstract We consider an optimal distributed control problem involving semilinear parabolic partial differential equations, with control and state constraints. Since no convexity assumptions are made, the problem is reformulated in relaxed form. The state equation is discretized using a finite element method in space and a θ-scheme in time, while the controls are approximated by blockwise constant relaxed controls. The first result is that, under appropriate assumptions, the properties of optimality, and of extremality and admissibility, carry over in the limit to the corresponding properties for the relaxed continuous problem. We also propose progressively refining discrete conditional gradient and gradient-penalty methods, which generate relaxed controls, for solving the continuous relaxed problem, thus reducing computations and memory. Numerical examples are given. © Springer-Verlag. en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
dc.identifier.volume 2907 en
dc.identifier.spage 214 en
dc.identifier.epage 221 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής