HEAL DSpace

Automated diagnosis of brain tumours using a novel density estimation method for image segmentation and independent component analysis combined with support vector machines for image classification

Αποθετήριο DSpace/Manakin

Εμφάνιση απλής εγγραφής

dc.contributor.author Glotsos, D en
dc.contributor.author Spyridonos, P en
dc.contributor.author Ravazoula, P en
dc.contributor.author Cavouras, D en
dc.contributor.author Nikiforidis, G en
dc.date.accessioned 2014-03-01T01:53:38Z
dc.date.available 2014-03-01T01:53:38Z
dc.date.issued 2004 en
dc.identifier.issn 03029743 en
dc.identifier.uri https://dspace.lib.ntua.gr/xmlui/handle/123456789/27086
dc.relation.uri http://www.scopus.com/inward/record.url?eid=2-s2.0-35048864910&partnerID=40&md5=a049638ab4cae33cf1fe0b3311f95cc3 en
dc.title Automated diagnosis of brain tumours using a novel density estimation method for image segmentation and independent component analysis combined with support vector machines for image classification en
heal.type journalArticle en
heal.publicationDate 2004 en
heal.abstract A computer-aided system was developed for the automatic diagnosis of brain tumours using a novel density estimation method for image segmentation and independent component analysis (ICA) combined with Support Vector Machines (SVM) for image classification. Images from 87 tumor biopsies were digitized and classified into low and high-grade. Segmentation was performed utilizing a density estimation clustering method that isolated nuclei from background. Nuclear features were quantified to encode tumour malignancy. 46 cases were used to construct the SVM classifier. ICA determined the most important feature combination. Classifier performance was evaluated using the leave-one-out method. 41 cases collected from a different hospital were used to validate the systems' generalization. For the training set the SVM classifier gave 84.9%. For the validation set classification performance was 82.9%. The proposed methodology is a dynamic new alternative to computer-aided diagnosis of brain tumours malignancy since it combines robust segmentation and high effective classification algorithm. © Springer-Verlag Berlin Heidelberg 2004. en
heal.journalName Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en
dc.identifier.volume 3316 en
dc.identifier.spage 1058 en
dc.identifier.epage 1063 en


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Αυτό το τεκμήριο εμφανίζεται στην ακόλουθη συλλογή(ές)

Εμφάνιση απλής εγγραφής