dc.contributor.author |
Mitsis, GD |
en |
dc.contributor.author |
Poulin, MJ |
en |
dc.contributor.author |
Robbins, PA |
en |
dc.contributor.author |
Marmarelis, VZ |
en |
dc.date.accessioned |
2014-03-01T01:53:44Z |
|
dc.date.available |
2014-03-01T01:53:44Z |
|
dc.date.issued |
2004 |
en |
dc.identifier.issn |
00189294 |
en |
dc.identifier.uri |
https://dspace.lib.ntua.gr/xmlui/handle/123456789/27111 |
|
dc.subject |
Cerebral autoregulation |
en |
dc.subject |
Cerebral hemodynamics |
en |
dc.subject |
Laguerre-Volterra network |
en |
dc.subject |
Nonlinear modeling |
en |
dc.subject |
Nonstationary systems |
en |
dc.subject |
Volterra kernels |
en |
dc.subject.other |
Arterial blood pressure |
en |
dc.subject.other |
Cerebral blood flow |
en |
dc.subject.other |
Laguerre-Volterra network methodology |
en |
dc.subject.other |
Blood |
en |
dc.subject.other |
Carbon dioxide |
en |
dc.subject.other |
Computer simulation |
en |
dc.subject.other |
Frequencies |
en |
dc.subject.other |
Hemodynamics |
en |
dc.subject.other |
Mathematical models |
en |
dc.subject.other |
Nonlinear systems |
en |
dc.subject.other |
Blood vessels |
en |
dc.subject.other |
carbon dioxide |
en |
dc.subject.other |
adult |
en |
dc.subject.other |
arterial pressure |
en |
dc.subject.other |
article |
en |
dc.subject.other |
autoregulation |
en |
dc.subject.other |
brain blood flow |
en |
dc.subject.other |
controlled study |
en |
dc.subject.other |
dynamics |
en |
dc.subject.other |
flow rate |
en |
dc.subject.other |
frequency modulation |
en |
dc.subject.other |
human |
en |
dc.subject.other |
mathematical computing |
en |
dc.subject.other |
mathematical model |
en |
dc.subject.other |
Adult |
en |
dc.subject.other |
Blood Flow Velocity |
en |
dc.subject.other |
Blood Pressure |
en |
dc.subject.other |
Brain |
en |
dc.subject.other |
Carbon Dioxide |
en |
dc.subject.other |
Cerebrovascular Circulation |
en |
dc.subject.other |
Computer Simulation |
en |
dc.subject.other |
Humans |
en |
dc.subject.other |
Models, Cardiovascular |
en |
dc.subject.other |
Nonlinear Dynamics |
en |
dc.subject.other |
Pulmonary Gas Exchange |
en |
dc.subject.other |
Statistics |
en |
dc.title |
Nonlinear modeling of the dynamic effects of arterial pressure and CO2 variations on cerebral blood flow in healthy humans |
en |
heal.type |
journalArticle |
en |
heal.identifier.primary |
10.1109/TBME.2004.834272 |
en |
heal.identifier.secondary |
http://dx.doi.org/10.1109/TBME.2004.834272 |
en |
heal.publicationDate |
2004 |
en |
heal.abstract |
The effect of spontaneous beat-to-beat mean arterial blood pressure fluctuations and breath-to-breath end-tidal CO2 fluctuations on beat-to-beat cerebral blood flow velocity variations is studied using the Laguerre-Volterra network methodology for multiple-input nonlinear systems. The observations made from experimental measurements from ten healthy human subjects reveal that, whereas pressure fluctuations explain most of the high-frequency blood flow velocity variations (above 0.04 Hz), end-tidal CO2 fluctuations as well as nonlinear interactions between pressure and CO2 have a considerable effect in the lower frequencies (below 0.04 Hz). They also indicate that cerebral autoregulation is strongly nonlinear and dynamic (frequency-dependent). Nonlinearities are mainly active in the low-frequency range (below 0.04 Hz) and are more prominent in the dynamics of the end-tidal CO2-blood flow velocity relationship. Significant nonstationarities are also revealed by the obtained models, with greater variability evident for the effects of CO2 on blood flow velocity dynamics. |
en |
heal.journalName |
IEEE Transactions on Biomedical Engineering |
en |
dc.identifier.doi |
10.1109/TBME.2004.834272 |
en |
dc.identifier.volume |
51 |
en |
dc.identifier.issue |
11 |
en |
dc.identifier.spage |
1932 |
en |
dc.identifier.epage |
1943 |
en |